Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
1.
R Soc Open Sci ; 10(3): 221122, 2023 Mar.
Article in English | MEDLINE | ID: covidwho-2272085

ABSTRACT

Close contacts between individuals provide opportunities for the transmission of diseases, including COVID-19. While individuals take part in many different types of interactions, including those with classmates, co-workers and household members, it is the conglomeration of all of these interactions that produces the complex social contact network interconnecting individuals across the population. Thus, while an individual might decide their own risk tolerance in response to a threat of infection, the consequences of such decisions are rarely so confined, propagating far beyond any one person. We assess the effect of different population-level risk-tolerance regimes, population structure in the form of age and household-size distributions, and different interaction types on epidemic spread in plausible human contact networks to gain insight into how contact network structure affects pathogen spread through a population. In particular, we find that behavioural changes by vulnerable individuals in isolation are insufficient to reduce those individuals' infection risk and that population structure can have varied and counteracting effects on epidemic outcomes. The relative impact of each interaction type was contingent on assumptions underlying contact network construction, stressing the importance of empirical validation. Taken together, these results promote a nuanced understanding of disease spread on contact networks, with implications for public health strategies.

2.
Parasitology ; 148(3): 274-288, 2021 03.
Article in English | MEDLINE | ID: covidwho-1087391

ABSTRACT

An animal's social behaviour both influences and changes in response to its parasites. Here we consider these bidirectional links between host social behaviours and parasite infection, both those that occur from ecological vs evolutionary processes. First, we review how social behaviours of individuals and groups influence ecological patterns of parasite transmission. We then discuss how parasite infection, in turn, can alter host social interactions by changing the behaviour of both infected and uninfected individuals. Together, these ecological feedbacks between social behaviour and parasite infection can result in important epidemiological consequences. Next, we consider the ways in which host social behaviours evolve in response to parasites, highlighting constraints that arise from the need for hosts to maintain benefits of sociality while minimizing fitness costs of parasites. Finally, we consider how host social behaviours shape the population genetic structure of parasites and the evolution of key parasite traits, such as virulence. Overall, these bidirectional relationships between host social behaviours and parasites are an important yet often underappreciated component of population-level disease dynamics and host-parasite coevolution.


Subject(s)
Host-Parasite Interactions , Parasites/physiology , Parasitic Diseases, Animal/epidemiology , Social Behavior , Animals , Prevalence
3.
PLoS One ; 16(1): e0242955, 2021.
Article in English | MEDLINE | ID: covidwho-1044112

ABSTRACT

Human behavior (movement, social contacts) plays a central role in the spread of pathogens like SARS-CoV-2. The rapid spread of SARS-CoV-2 was driven by global human movement, and initial lockdown measures aimed to localize movement and contact in order to slow spread. Thus, movement and contact patterns need to be explicitly considered when making reopening decisions, especially regarding return to work. Here, as a case study, we consider the initial stages of resuming research at a large research university, using approaches from movement ecology and contact network epidemiology. First, we develop a dynamical pathogen model describing movement between home and work; we show that limiting social contact, via reduced people or reduced time in the workplace are fairly equivalent strategies to slow pathogen spread. Second, we develop a model based on spatial contact patterns within a specific office and lab building on campus; we show that restricting on-campus activities to labs (rather than labs and offices) could dramatically alter (modularize) contact network structure and thus, potentially reduce pathogen spread by providing a workplace mechanism to reduce contact. Here we argue that explicitly accounting for human movement and contact behavior in the workplace can provide additional strategies to slow pathogen spread that can be used in conjunction with ongoing public health efforts.


Subject(s)
COVID-19/transmission , Contact Tracing , Return to Work , COVID-19/epidemiology , COVID-19/prevention & control , Communicable Disease Control , Computer Simulation , Humans , Models, Biological , Movement , Social Interaction , Social Network Analysis , Transportation , Workplace
SELECTION OF CITATIONS
SEARCH DETAIL